If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-20x+2=0
a = 10; b = -20; c = +2;
Δ = b2-4ac
Δ = -202-4·10·2
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-8\sqrt{5}}{2*10}=\frac{20-8\sqrt{5}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+8\sqrt{5}}{2*10}=\frac{20+8\sqrt{5}}{20} $
| 4x-5=2x+14 | | 2(6z+3)-8=58 | | 6x+13=205 | | 5x+6-x=8+5x-6 | | 2x+7x-4x=16+4 | | 10a=23 | | -4p+8=24 | | -10-7r=0 | | 1+8m=-31 | | 5x+4x-2x=47+2 | | |-x+3|=8 | | 2(t+1)=3t | | -5a+5=10 | | 2-4b=-2 | | 6k-5=29 | | 5v+3=43 | | -9n+2=25 | | -9+4x=0 | | 1+4m=-47 | | 8-10n=42 | | 2a-9=0 | | 6k+3=9 | | 6^(x)=1/216 | | 6^(x)=1 | | 2x-(4+3x)=8+3x | | 10-2(2x-10)=-8 | | 6a-3a=36 | | M^3-2m^2-m+2=0 | | 7-4x=22-7x | | 18x÷-6x=0 | | 3w−-3.84=8.64 | | m()=78.38M()32,42 |